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1Abstract— A kernel is the core component of an operating 

system. With the use of interprocess communication and 

system calls, it acts as a bridge between various applications 

and the data processing performed at the hardware level. 

During a privilege escalation attack, the attacker to grant 

himself higher privileges. This is typically achieved by 

performing kernel-level operations that allow the attacker to 

run unauthorized/malicious code which results in corrupting 

the kernel. The main aim of the paper is to present the study of 

various kernel & kernel attacks present in different operating 

systems. This paper is also focus on study of various counter-

attack methods which are used to protect kernel. Normally 

kernel can be protected by using three different strategies 

which includes monitoring the invoked process, snooping the 

incoming packets at network level and establishing trust of a 

process by using TCB(Trusted computing Base-A database of 

malicious process which are periodically updated by the 

admin) different methods in different layer for example In 

network layer by snooping incoming packets.  

 
Index Terms— Kernel, OS, Process monitoring, Malware 

analysis, Virtual Machine Monitor. 

I. INTRODUCTION 

Nowadays malware use a variety of techniques to 

cause divergence in the attacked program’s behavior and 

achieve the attacker’s target. Traditional malicious programs 

such as computer viruses, worms, and exploits have been 

using code injection attacks which inject malicious code into 

a program to perform a nefarious function. Some Intrusion 

detection techniques based on such code properties 

effectively detect or prevent this class of malware attacks 

[5], [6]. 

 Attackers are becoming strong they use alternate 

methods such as return-to-libc attacks [7], return-oriented 

programming [8], and jump-oriented programming [9] reuse 

existing code to create malicious logic. Additionally, kernel 

malware can be launched via vulnerable code in program 

 
 

bugs [10], [11], third-party kernel drivers, and memory 

interfaces [12] which can allow manipulation of kernel code 

and data using legitimate code (i.e., kernel or driver code).  

In order to detect such attacks, another group of 

detection techniques which focus on identifying malicious 

software based on its behavior [13]. These approaches 

generate malware signatures by using a code sequence 

pattern of malware (e.g., instruction sequences or system 

call sequences) to match such behavior. However, some 

malware employ techniques that triggers a variety of code 

execution pattern. For example, code obfuscation[14] and 

code emulation[15] techniques can confuse behavior-based 

malware detectors and hence avoid detection.  

This race between malware and malware detectors centers 

around the various properties of malicious code: 

injection/integrity of code or the causal sequences pattern of 

malicious code. This paper focus on the various malware 

detection techniques[1][2][3][4] which protects kernel. 

II. DATA-CENTRIC OS KERNEL MALWARE DETECTION 

In data-centric OS kernel malware detection[1] has a 

brilliant scheme which detects and characterizes various 

malware attacks based on the properties of manipulated data 

objects during the attacks. This framework consists of two 

system components. 

� First, a runtime kernel object mapping system which 

has an un-tampered view of kernel data objects resistant 

to manipulation by malware. This view is effective at 

detecting a class of malware that hides dynamic data 

objects. 

� Second, a new kernel malware detection approach that 

generates malware signatures based on the data access 

patterns specific to malware attacks. This approach has 

an extended coverage that detects not only the malware 

with the signatures but also the malware variants which 

share the attack patterns by modeling the low level data 

access behaviors as signatures. 
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A.Kernel object mapping scheme: 

 At runtime, the VMM captures all allocation and 

deallocation of events by intercepting whenever one of the 

allocation/deallocation functions is called. There are three 

things which has to be determined during runtime: (1) the 

call site, (2) the address of the object allocated or 

deallocated, and (3) the size of the allocated object. To 

determine such call site, The return address of the call is 

used to the allocation function. In the instruction stream, the 

Kernel level memory allocation functions are similar to user 

level ones. The function kmalloc, for example, has not take 

a type but a size to allocate memory. return address is the 

address of the instruction after the call instruction. The 

captured call site is stored in the kernel object map hence 

that type can be determined at the time of offline source 

code analysis. The address and size of objects has been 

allocated or deallocated can be derived from the arguments 

and return value. For the allocation function, the size is 

given as a function argument and the memory address as the 

return value. For a deallocation function, the address is 

given as a function argument. These values can be 

determined by the VMM by using functions of call 

conventions. Function arguments are delivered by the use of 

the stack or the registers, and they are captured by 

inspecting these locations at the entry of memory 

allocation/deallocation calls. In order capture the return 

value, the timestamp & location of the return value is used. 

Integers up to 32-bits as well as 32-bit pointers are delivered 

via the EAX register and all values of same types. The 

return value is available in this register when the allocation 

function returns to the caller. In order to capture the return 

values at the correct time the VMM uses a mechanism 

called virtual stack. When a memory allocation function is 

called, the return address is extracted from the function and 

pushed on to this stack. When the address of the code to be 

executed matches the return address on the stack, the VMM 

intercepts and captures the return value from the EAX 

register. 

 
Figure 1. Data behavior based malware characterization 

 

B.Kernel malware detection: 

The data behavior of kernel malware is characterized and 

used to determine the presence of malware. The overview of 

this component is presented in Figure. 1, and the sub-

components are as follows. As a basic unit to represent the 

kernel’s data behavior, DataGene generates a summary of 

the various access patterns for all kernel objects accessed in 

a kernel execution instance. For each access on kernel 

memory in the guest OS, the VMM intercepts and records 

the relevant information about the memory access of kernel, 

such as the accessing code, the accessed memory type, and 

the accessed offset (shown as The Data Behavior 

Aggregator). 

To determine malware behavior, the memory access 

patterns for two kinds of kernel execution instances are 

generated: benign kernel which runs and malicious kernel 

runs where kernel malware is active. By taking the 

difference between these two sets of memory access 

patterns, the data behavior specific to the kernel malware 

was determined and its signature also generated (Data 

Behavior Signature). Later, in order to detect kernel 

malware, the generated signatures are compared to the 

memory access patterns of a running instance of the OS 

(Checking Kernel Execution). 

III. HYPERCHECK: A HARDWARE-ASSISTED INTEGRITY 

MONITOR  

HyperCheck[2] is composed of three key components: the 

physical memory acquiring module, the analysis module and 

the CPU register checking module. The memory acquiring 

module reads the contents of the physical memory of the 

machine and sends them to the analysis module. In analysis 

module, It checks the memory contents and verifies if 

anything is altered. The CPU register checking module reads 

the registers and validates their integrity. The overall 

architecture of HyperCheck is shown in figure 2. 

 

 
Figure 2. Hyper check 

 

HyperCheck should not rely on any software running on 

the machine except the boot loader. Since the software may 

be compromised, one cannot trust even the hypervisor. 

Therefore, we use hardware – a PCI Ethernet card – as a 

memory acquiring module and SMM to read the CPU 

registers. Usually, Ethernet cards are PCI devices with bus 

master mode enabled and are able to read the physical 

memory through DMA, which does not need help from 

CPU. SMM is an independent operating mode and could be 

made inaccessible from protected mode hence hypervisor 

and privileged domains cannot run.  
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Previous researchers only used PCI devices which is used 

to read the physical memory. However, CPU registers are 

also important because the location of active memory used 

by the hypervisor or an OS kernel such as CR3 and IDTR 

registers are defined by CP registers. Without these 

registers, the attacker can launch a copy-and-change attack. 

It means the attacker copies the memory to a new location 

and modifies it. Then the attacker updates the register to 

point to the new location. PCI devices cannot read the CPU 

registers, thereby failing to detect this kind of attacks. By 

using SMM, HyperCheck can examine the registers and 

report the suspicious modifications. 

IV. PROCESS AUTHENTICATION FOR HIGH SYSTEM 

ASSURANCE  

Our Authenticated Application (A2) design[3] which 

enables the authentication of applications. It consists of 

three components: Credential Registrar, Authenticator and 

Service Access Monitor (SAM). There are three components 

in the architecture which are explained below. 

� Credential Registrar is for generating a credential for 

the application and registering the application with the 

kernel.  

� Authenticator is for authenticating a process when it 

first starts. 

� Service Access Monitor (SAM) is for verifying the 

authentication status of a process at runtime, i.e., 

whether the process has been successfully authenticated 

by the Authenticator 

A.Compatibility Mode for Legacy Applications: 

Process authentication protocol requires the modification 

of legacy applications to support the interaction with the 

Authenticator, raising a compatibility issue. A middleware 

to perform the authentication on behalf of the application 

was designed. The credential generation operation is 

unchanged. System authenticate legacy applications using a 

helper program referred to as the Verifier. The Verifier has 

the read access to the credential list L maintained by the 

registrar, but not the write access. The steps are explained 

below. 

 
Figure 3. Workflow of A2 in compatibility mode with the verifier 

1. To authenticate a newly started process p with process 

name p.name, process ID p.pid, and the path to the code 

capsule p.path (all obtained from the kernel), the 

Authenticator checks if the process has already been 

verified by looking its p.pid up in the status list T. If 

p.pid /2 ϵ T, the Authenticator sends to the Verifier 

(p.path, p.name). 

2. The Verifier reads p.path to retrieve the application’s 

copy of the credential at the end of its code capsule. 

This credential is denoted by p.cred. It throws an error 

if the credential cannot be found. 

3. The Verifier looks up the credential list T by p.name to 

retrieve the corresponding credential, which is denoted 

by p.cred’. It throws an error if p.cred’ is null.  

4. The Verifier checks if p.cred’ == p.cred 2. If yes, then 

the authentication succeeds. Otherwise, fails. The 

Verifier notifies the Authenticator with the 

authentication result. 

5. The Authenticator updates the status list with p.pid. 

 

In A2 prototype, the Verifier is implemented as a 

userspace application. It has a shared memory region with 

the Authenticator to exchange verification messages. The 

Verifier is equipped with a manually installed credential, so 

that itself can be authenticated as a bootstrapping procedure. 

When the Verifier’s process starts, the Authenticator 

authenticates its identity to prevent identity spoofing. 

V. SCALABLE DISTRIBUTED SERVICE INTEGRITY 

ATTESTATION FOR SOFTWARE-AS-A-SERVICE CLOUDS  

IntTest[4], a scalable and effective service integrity 

attestation framework for SaaS clouds. IntTest provides a 

novel integrated attestation graph analysis scheme which is 

shown below that can provide stronger attacker pinpointing 

power than previous schemes. Moreover, IntTest can 

automatically enhance result quality by replacing bad results 

produced by malicious attackers with good results produced 

by benign service providers. 

 
Figure 4. Replay-based consistency check 

 

In order to detect service integrity attack and pinpoint 

malicious service providers, Intest algorithm relies on 
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replay-based consistency check to derive the 

consistency/inconsistency relationships between service 

providers. For example, Figure 4 shows the consistency 

check scheme for attesting three service providers p1, p2, 

and p3 that offer the same service function f. The portal 

sends the original input data d1 to p1 and gets back the 

result f(d1). Next, the portal sends d′ 1, a duplicate of d1 to 

p3 and gets back the result f(d′1). The portal then compares 

f(d1) and f(d′ 1) to see whether p1 and p3 are consistent. 

The intuition behind this approach is that if two service 

providers disagree with each other on the processing result 

of the same input, at least one of them should be malicious. 

Note that we do not send an input data item and its 

duplicates (i.e., attestation data) concurrently. Instead, we 

replay the attestation data on different service providers 

after receiving the processing result of the original data. 

Thus, the malicious attackers cannot avoid the risk of being 

detected when they produce false results on the original 

data. Although the replay scheme may cause delay in a 

single tuple processing, we can overlap the attestation and 

normal processing of consecutive tuples in the data stream 

to hide the attestation delay from the user.  

If two service providers always give consistent output 

results on all input data, there exists consistency relationship 

between them. Otherwise, if they give different outputs on at 

least one input data, there is inconsistency relationship 

between them. We do not limit the consistency relationship 

to equality function since two benign service providers may 

produce similar but not exactly the same results. For 

example, the credit scores for the same person may vary by 

a small difference when obtained from different credit 

bureaus. We allow the user to define a distance function to 

quantify the biggest tolerable result difference. Using the 

graph scheme the malicious behavior of software is detected 

in cloud based services. 

VI. CONCLUSION  

In modern computing era, virtual machines takes major 

role. Virtual machine security is very important in cloud 

computing, we have discussed various virtual machine 

architectures & its techniques to prevent malicious attacks in 

kernel. In order to withstand such kind of attacks a 

lightweight and scalable security architecture has to be 

designed from the disadvantages of methods which 

explained in the above section. 
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