
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 56

1Abstract— A kernel is the core component of an operating

system. With the use of interprocess communication and

system calls, it acts as a bridge between various applications

and the data processing performed at the hardware level.

During a privilege escalation attack, the attacker to grant

himself higher privileges. This is typically achieved by

performing kernel-level operations that allow the attacker to

run unauthorized/malicious code which results in corrupting

the kernel. The main aim of the paper is to present the study of

various kernel & kernel attacks present in different operating

systems. This paper is also focus on study of various counter-

attack methods which are used to protect kernel. Normally

kernel can be protected by using three different strategies

which includes monitoring the invoked process, snooping the

incoming packets at network level and establishing trust of a

process by using TCB(Trusted computing Base-A database of

malicious process which are periodically updated by the

admin) different methods in different layer for example In

network layer by snooping incoming packets.

Index Terms— Kernel, OS, Process monitoring, Malware

analysis, Virtual Machine Monitor.

I. INTRODUCTION

Nowadays malware use a variety of techniques to

cause divergence in the attacked program’s behavior and

achieve the attacker’s target. Traditional malicious programs

such as computer viruses, worms, and exploits have been

using code injection attacks which inject malicious code into

a program to perform a nefarious function. Some Intrusion

detection techniques based on such code properties

effectively detect or prevent this class of malware attacks

[5], [6].

 Attackers are becoming strong they use alternate

methods such as return-to-libc attacks [7], return-oriented

programming [8], and jump-oriented programming [9] reuse

existing code to create malicious logic. Additionally, kernel

malware can be launched via vulnerable code in program

bugs [10], [11], third-party kernel drivers, and memory

interfaces [12] which can allow manipulation of kernel code

and data using legitimate code (i.e., kernel or driver code).

In order to detect such attacks, another group of

detection techniques which focus on identifying malicious

software based on its behavior [13]. These approaches

generate malware signatures by using a code sequence

pattern of malware (e.g., instruction sequences or system

call sequences) to match such behavior. However, some

malware employ techniques that triggers a variety of code

execution pattern. For example, code obfuscation[14] and

code emulation[15] techniques can confuse behavior-based

malware detectors and hence avoid detection.

This race between malware and malware detectors centers

around the various properties of malicious code:

injection/integrity of code or the causal sequences pattern of

malicious code. This paper focus on the various malware

detection techniques[1][2][3][4] which protects kernel.

II. DATA-CENTRIC OS KERNEL MALWARE DETECTION

In data-centric OS kernel malware detection[1] has a

brilliant scheme which detects and characterizes various

malware attacks based on the properties of manipulated data

objects during the attacks. This framework consists of two

system components.

� First, a runtime kernel object mapping system which

has an un-tampered view of kernel data objects resistant

to manipulation by malware. This view is effective at

detecting a class of malware that hides dynamic data

objects.

� Second, a new kernel malware detection approach that

generates malware signatures based on the data access

patterns specific to malware attacks. This approach has

an extended coverage that detects not only the malware

with the signatures but also the malware variants which

share the attack patterns by modeling the low level data

access behaviors as signatures.

A Comprehensive Study Of Kernel Attacks And Its

Countermeasures In Virtual Machines

1Assistant professor, Parisutham Institute of Technology & science, Thanjavur-613007, India

2Professor, Periyar Maniammai University, Thanjavur-613403, India

Bright Prabahar P1, Vetrivelan2

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 57

A.Kernel object mapping scheme:

 At runtime, the VMM captures all allocation and

deallocation of events by intercepting whenever one of the

allocation/deallocation functions is called. There are three

things which has to be determined during runtime: (1) the

call site, (2) the address of the object allocated or

deallocated, and (3) the size of the allocated object. To

determine such call site, The return address of the call is

used to the allocation function. In the instruction stream, the

Kernel level memory allocation functions are similar to user

level ones. The function kmalloc, for example, has not take

a type but a size to allocate memory. return address is the

address of the instruction after the call instruction. The

captured call site is stored in the kernel object map hence

that type can be determined at the time of offline source

code analysis. The address and size of objects has been

allocated or deallocated can be derived from the arguments

and return value. For the allocation function, the size is

given as a function argument and the memory address as the

return value. For a deallocation function, the address is

given as a function argument. These values can be

determined by the VMM by using functions of call

conventions. Function arguments are delivered by the use of

the stack or the registers, and they are captured by

inspecting these locations at the entry of memory

allocation/deallocation calls. In order capture the return

value, the timestamp & location of the return value is used.

Integers up to 32-bits as well as 32-bit pointers are delivered

via the EAX register and all values of same types. The

return value is available in this register when the allocation

function returns to the caller. In order to capture the return

values at the correct time the VMM uses a mechanism

called virtual stack. When a memory allocation function is

called, the return address is extracted from the function and

pushed on to this stack. When the address of the code to be

executed matches the return address on the stack, the VMM

intercepts and captures the return value from the EAX

register.

Figure 1. Data behavior based malware characterization

B.Kernel malware detection:

The data behavior of kernel malware is characterized and

used to determine the presence of malware. The overview of

this component is presented in Figure. 1, and the sub-

components are as follows. As a basic unit to represent the

kernel’s data behavior, DataGene generates a summary of

the various access patterns for all kernel objects accessed in

a kernel execution instance. For each access on kernel

memory in the guest OS, the VMM intercepts and records

the relevant information about the memory access of kernel,

such as the accessing code, the accessed memory type, and

the accessed offset (shown as The Data Behavior

Aggregator).

To determine malware behavior, the memory access

patterns for two kinds of kernel execution instances are

generated: benign kernel which runs and malicious kernel

runs where kernel malware is active. By taking the

difference between these two sets of memory access

patterns, the data behavior specific to the kernel malware

was determined and its signature also generated (Data

Behavior Signature). Later, in order to detect kernel

malware, the generated signatures are compared to the

memory access patterns of a running instance of the OS

(Checking Kernel Execution).

III. HYPERCHECK: A HARDWARE-ASSISTED INTEGRITY

MONITOR

HyperCheck[2] is composed of three key components: the

physical memory acquiring module, the analysis module and

the CPU register checking module. The memory acquiring

module reads the contents of the physical memory of the

machine and sends them to the analysis module. In analysis

module, It checks the memory contents and verifies if

anything is altered. The CPU register checking module reads

the registers and validates their integrity. The overall

architecture of HyperCheck is shown in figure 2.

Figure 2. Hyper check

HyperCheck should not rely on any software running on

the machine except the boot loader. Since the software may

be compromised, one cannot trust even the hypervisor.

Therefore, we use hardware – a PCI Ethernet card – as a

memory acquiring module and SMM to read the CPU

registers. Usually, Ethernet cards are PCI devices with bus

master mode enabled and are able to read the physical

memory through DMA, which does not need help from

CPU. SMM is an independent operating mode and could be

made inaccessible from protected mode hence hypervisor

and privileged domains cannot run.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 58

Previous researchers only used PCI devices which is used

to read the physical memory. However, CPU registers are

also important because the location of active memory used

by the hypervisor or an OS kernel such as CR3 and IDTR

registers are defined by CP registers. Without these

registers, the attacker can launch a copy-and-change attack.

It means the attacker copies the memory to a new location

and modifies it. Then the attacker updates the register to

point to the new location. PCI devices cannot read the CPU

registers, thereby failing to detect this kind of attacks. By

using SMM, HyperCheck can examine the registers and

report the suspicious modifications.

IV. PROCESS AUTHENTICATION FOR HIGH SYSTEM

ASSURANCE

Our Authenticated Application (A2) design[3] which

enables the authentication of applications. It consists of

three components: Credential Registrar, Authenticator and

Service Access Monitor (SAM). There are three components

in the architecture which are explained below.

� Credential Registrar is for generating a credential for

the application and registering the application with the

kernel.

� Authenticator is for authenticating a process when it

first starts.

� Service Access Monitor (SAM) is for verifying the

authentication status of a process at runtime, i.e.,

whether the process has been successfully authenticated

by the Authenticator

A.Compatibility Mode for Legacy Applications:

Process authentication protocol requires the modification

of legacy applications to support the interaction with the

Authenticator, raising a compatibility issue. A middleware

to perform the authentication on behalf of the application

was designed. The credential generation operation is

unchanged. System authenticate legacy applications using a

helper program referred to as the Verifier. The Verifier has

the read access to the credential list L maintained by the

registrar, but not the write access. The steps are explained

below.

Figure 3. Workflow of A2 in compatibility mode with the verifier

1. To authenticate a newly started process p with process

name p.name, process ID p.pid, and the path to the code

capsule p.path (all obtained from the kernel), the

Authenticator checks if the process has already been

verified by looking its p.pid up in the status list T. If

p.pid /2 ϵ T, the Authenticator sends to the Verifier

(p.path, p.name).

2. The Verifier reads p.path to retrieve the application’s

copy of the credential at the end of its code capsule.

This credential is denoted by p.cred. It throws an error

if the credential cannot be found.

3. The Verifier looks up the credential list T by p.name to

retrieve the corresponding credential, which is denoted

by p.cred’. It throws an error if p.cred’ is null.

4. The Verifier checks if p.cred’ == p.cred 2. If yes, then

the authentication succeeds. Otherwise, fails. The

Verifier notifies the Authenticator with the

authentication result.

5. The Authenticator updates the status list with p.pid.

In A2 prototype, the Verifier is implemented as a

userspace application. It has a shared memory region with

the Authenticator to exchange verification messages. The

Verifier is equipped with a manually installed credential, so

that itself can be authenticated as a bootstrapping procedure.

When the Verifier’s process starts, the Authenticator

authenticates its identity to prevent identity spoofing.

V. SCALABLE DISTRIBUTED SERVICE INTEGRITY

ATTESTATION FOR SOFTWARE-AS-A-SERVICE CLOUDS

IntTest[4], a scalable and effective service integrity

attestation framework for SaaS clouds. IntTest provides a

novel integrated attestation graph analysis scheme which is

shown below that can provide stronger attacker pinpointing

power than previous schemes. Moreover, IntTest can

automatically enhance result quality by replacing bad results

produced by malicious attackers with good results produced

by benign service providers.

Figure 4. Replay-based consistency check

In order to detect service integrity attack and pinpoint

malicious service providers, Intest algorithm relies on

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 59

replay-based consistency check to derive the

consistency/inconsistency relationships between service

providers. For example, Figure 4 shows the consistency

check scheme for attesting three service providers p1, p2,

and p3 that offer the same service function f. The portal

sends the original input data d1 to p1 and gets back the

result f(d1). Next, the portal sends d′ 1, a duplicate of d1 to

p3 and gets back the result f(d′1). The portal then compares

f(d1) and f(d′ 1) to see whether p1 and p3 are consistent.

The intuition behind this approach is that if two service

providers disagree with each other on the processing result

of the same input, at least one of them should be malicious.

Note that we do not send an input data item and its

duplicates (i.e., attestation data) concurrently. Instead, we

replay the attestation data on different service providers

after receiving the processing result of the original data.

Thus, the malicious attackers cannot avoid the risk of being

detected when they produce false results on the original

data. Although the replay scheme may cause delay in a

single tuple processing, we can overlap the attestation and

normal processing of consecutive tuples in the data stream

to hide the attestation delay from the user.

If two service providers always give consistent output

results on all input data, there exists consistency relationship

between them. Otherwise, if they give different outputs on at

least one input data, there is inconsistency relationship

between them. We do not limit the consistency relationship

to equality function since two benign service providers may

produce similar but not exactly the same results. For

example, the credit scores for the same person may vary by

a small difference when obtained from different credit

bureaus. We allow the user to define a distance function to

quantify the biggest tolerable result difference. Using the

graph scheme the malicious behavior of software is detected

in cloud based services.

VI. CONCLUSION

In modern computing era, virtual machines takes major

role. Virtual machine security is very important in cloud

computing, we have discussed various virtual machine

architectures & its techniques to prevent malicious attacks in

kernel. In order to withstand such kind of attacks a

lightweight and scalable security architecture has to be

designed from the disadvantages of methods which

explained in the above section.

REFERENCES

[1] Junghwan Rhee; Riley, R.; Zhiqiang Lin; Xuxian Jiang; Dongyan Xu,

"Data-Centric OS Kernel Malware Characterization," Information

Forensics and Security, IEEE Transactions on , vol.9, no.1, pp.72,87,
Jan. 2014

[2] Fengwei Zhang; Jiang Wang; Kun Sun; Stavrou, A., "HyperCheck: A

Hardware-AssistedIntegrity Monitor," Dependable and Secure
Computing, IEEE Transactions on , vol.11, no.4, pp.332,344, July-

Aug. 2014.

[3] Almohri, H.M.J.; Danfeng Yao; Kafura, D., "Process Authentication

for High System Assurance," Dependable and Secure Computing,

IEEE Transactions on , vol.11, no.2, pp.168,180, March-April 2014.

[4] Juan Du; Dean, D.J.; Yongmin Tan; Xiaohui Gu; Ting Yu, "Scalable

Distributed Service Integrity Attestation for Software-as-a-Service

Clouds," Parallel and Distributed Systems, IEEE Transactions on ,

vol.25, no.3, pp.730,739, March 2014.
[5] H. Etoh. GCC Extension for Protecting Applications From

Stacksmashing Attacks. http://www.trl.ibm.com/projects/ security/

ssp/ . Accessed May 2011.

[6] Vendicator. Stack Shield: A “Stack Smashing” Technique Protection

Tool for Linux. http://www.angelfire.com/ sk/ stackshield/ info.html.
Accessed May 2011.

[7] Bypassing Non-executable-stack during Exploitation using Return-to-

libc. Phrack Magazine.
[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good

Instructions Go Bad: Generalizing Return-Oriented Programming to

RISC. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08), pages 27–38. ACM Press, Oct.

2008.

[9] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating Return-

Oriented Rootkits with ”Return-Less” Kernels. In Proceedings of the

5th European conference on Computer systems (EUROSYS’10),

2010.

[10] The Month of Kernel Bugs (MoKB) archive. http://projects.info-

pull.com/mokb/.

[11] US-CERT. US-CERT Vulnerability Notes Database.
http://www.kb.cert.org/vuls/.

[12] Devik and sd. Linux On-the-fly Kernel Patching without LKM. http:

//www.phrack.com/issues.html?issue=58&id=7.
[13] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G.

Vigna. Efficient Detection of Split Personalities in Malware. In

Proceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS’10), 2010.

[14] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding Malware

Analysis Using Conditional Code Obfuscation. In Proceedings of the

15th Annual Network and Distributed System Security Symposium

(NDSS’08), 2008.

[15] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic Reverse

Engineering of Malware Emulators. In Proceedings of the 2009 30th

IEEE Symposium on Security and Privacy, 2009.

